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ABSTRACT 

A procedure is developed for the recovery of the inflationary potential owl 

the interval that affects astrophysical scales (E I Mp- IO” Mpc). The ampli- 

tudes of the scalar and tensor metric perturbations and their power-spectrum 

indices, which can in principle be inferred from large-angle CBR anisotropy 

experiments and other cosmological data. determine the value of the infla- 

tionary potential and its first two derivatives. From these, the inflationary 

potential can be reconstructed in a Taylor series and the consistency of the 

inflationary hypothesis tested. A number of examples are presented, and the 

effect of observational uncertainties is discussed. 
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1 Introduction 

The detection of anisotropy in the cosmic background radiation (CBR) by 

the Differential Microwave Radiometer on the Cosmic Background Explorer 
(CORE) satellite [I] has provided the first evidence for the existence of the 
primeval density perturbations that seeded all the structure seen in the Un- 

verse today. Two other experiments have now confirmed the COBE de- 

tections I))> and numerous experiments are underway to probe anisotropy 

on angula,r scales from arcminutes to tens of degrees. (CBR anisotropy on 

nugular-scale 0 arises primarily due to metric perturbations on length-scale 

100 Mpc (H/deg). so that CBR anisotropy can probe metric fluctuations on 

scales from about 10 Mpc to lo4 Mpc.] 

The COBB DMR detection has opened the door for the study of the 

primeval density perturbations, and thereby the microphysics that produced 

them. At the moment there are three viable models of structure format,ion: 

the cold dark matter models, wherein the perturbations arise from quantum 
fluctuations excited during inflation and expanded to astrophysical length 

scales (1 - 1O-34 set); the models wherein the seed perturbations are topo- 

logical defects [3], such as textures, cosmic strings, and global monopoles, 

produced in a very-ea,rly phase transition (t - 1O-36 set); and the PIB model 

141. wherein the perturbations are local fluctuations in the baryon number 

of unknown wigin. The PIB model distinguishes itself from the others in 

requiring no nonbaryotlic dark matter (a, = Q,s - 0.2). 

The cold dark matter models motivated by inflation ha,ve been relatively 
successful. though not without shortcomings [5]. In these models there are: 

in addition to density (scalar metric) perturbations, gravity-wave (tensor 

metric) perturhat.ions that also give rise to CBR temperature anisotropy. 

This is a curse and a blessing: CBR anisotropy cannot be assumed to reflect 

the underlying density perturbations alone; on the other hand, if the tensor 

and scalar contributions can be separated, much can be learned about the 

underlying inflationary potential [6, 71. 

The separation of the contribution of scalar and tensor perturbations to 

CBR anisotropy involves exploiting their different dependencies upon angu- 
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lar scale and possibly t,heir contributions to the polarization of the CBR 

anisotropy (8, 91. In addition, since the scalar perturbations alone seed the 

formation of structure, measurements of the distribution of matter in the Uni- 
verse derived from red-shift surveys, peculiar-velocity measurements. and so 

on can be used to determine their spectrum independently. 

The concern of t.his paper is what can be learned about the inflationary 

potential from the spectral indices and amplitudes of the scalar and tensor 

metric perturbations. This question has also been addressed elsewhere [6]; 

our approach follows the formalism set up in Ref. [7] which is applicable 
to inHationary potentials that are relatively smooth over the interval that 

determines metric perturbations on astrophysical scales. It is not applicable 

to potentials with “specially engineered features” [lo]. 

2 The Method 

L$:e use four observables to characterize the scalar and tensor metric perturba- 
tions: their contributions to the variance of the CBR quadrupole anisotropy. 

S for scalar and T for tensor- and the power-law indices of their fluctuation 

spectra, R for scalar and no for tensor. (For scale-invariant perturbations 

n = 1 and 12~ = 0. The horizon-crossing amplitudes of density perturbations 

vary with scale as A(‘-“)/* and of the gravity-wave perturbations as X-“T/2.) 

In Ref. [7] it was shown that these quantities can be related to the value 

of the inflationary potential, its steepness, and the change in its steepness, 
evaluated around the epoch that the scales of current astrophysical interest 

crossed outside the horizon during inflation (about 50 e-folds before the end 

of inHation): 

L:5” c I:(@,,); 

pju is the value of the scalar field that drives inflation 50 e-folds before the 
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end of infiariou (or t~ouever many e-folds before t,he end of inflation the 

r~strophysicall?; relevant scales crossed outside the horizon), mpl = 1.22 X 
10’” GrV is the Pla,nck mass. and prime indicates derivaaive with respect to 

0. 

The formulae relating the observables .I;‘. 7’, n, and 1%~ and the properties 
of the inHationary pot,ential are 

2.22 ho 
~P14d0 

( l+l.l(n-l)+~jnT-(lL-l)] ; 
> 

7’ z “(‘$“‘) = “.606$(l + l.‘mr); 

, _ 0 I -40. 2 
n = 

87r 47r ’ 

RT = -&. 
ST ’ , 

I 
3 

= 0.28s& = -7 rl7.1 (2) 

where .i’ (7’) is lhe contribution of scalar (tensor) perturbations to the vari- 

ance of t,he CBR quadrupole temperature anisot,ropy and brackets indicate 

the ensemble ttveragc [IS]. Since the four observables can be expressed in 
t.erms of three properties of the potential a consistency check exists [7]. 

These formulae have been computed to lowest order in the deviation from 
scale inva,riarlce. 1.e.. O(TZT: n-l), and only apply to smooth potentials. Kate 

too that no must be less than zero (more power on large scales), though the 

scalar power-law index n can be greater than 1. From Eqs. (2) one can solve 

for the potential and its first two derivatives: 

v,, = 1.65T(l - 1.2n~); 

v$ = 5.01GGPk&w); 
q; = 4a[(n - 1) - 3rLT] (1/50/~mnp,2). (3) 

.4t present. the COBE DMR detection serves mainly to determine the 



sum of the scalar and t,erisor contributions to the qlladrupole anisotropy:’ 

T+.?= 
i 

16&4/LK 2 

2.726 Ii i 
N 3.4 x lo-“. (4) 

In Ref. 17) detailed formulae for the tensor and scalar contributions to the 

higher multipoles art: givelr: very roughly. for 1 << 200 and standard recom- 
bination, 

41 + 1 r~ldml’) - ,y ([,‘)“-‘, 
47 

- 1 

01 + ~)bw) 
47r 

- T (i/ay-. (5) 

Thus. in principle, a separation of the tensor and scalar contributions to the 
individual multipole ampiitudes determines no and TX- 1. Since no is directly 

related to the ratio of the tensor to scalar contributions of the quadrupole 

anisotropy, measurements of S and T also determines IV. 
The recovery of the inflationary potential proceeds by constructing its 

Taylor series: 

V(4) = r/,0 + (I$ - &o) I/& + (4 - &o)2 v&/2! + ” : (6) 

as before> & is the value of the scalar field 50 e-folds before the end of 

inflation. Measurements of T: S. 71. and )LT only determine the square of V&, 

so rhe sign of \,:$ annot be determined: as a matter of convention we always 

take it to be negative. The sign of V’ is not physical since it can be changed 

by the field redefinition: 4 + -0. 

Scalar and tensor metric perturbations on the astrophysically relevant 

scales--say from t,Lre scale of galaxies. about I klpc, to the present horizon 

scale. w,-’ - IO4 Mpc--were created during a small portion of the infla- 

tionary epoch, correspondin, v to an interval of roughly 8 e-folds around 50 

e-folds before the end of inflation (a precise formula relating the epoch when 

‘The value for the variance of the CBR quadrupole anisotropy derived from the COBE 

DMR data depends slightly upon the spectral index of the metric perturbations; see 

Refs. [l]. 



a~ scale went outside the horizon during inflation and the parameters of in- 

flation is given in Ref. [i]). This means that astrophysical and cosmological 
data can only reveal information about the inflationary potential over this 
narrow interval, a fact which motivated the formalism developed in [7]. As 

a matter of principle, we will only reconstruct the potential over the interval 

that corresponds to these 8 e-foldings of the scale factor. 

The equation of motion for 4 in the slow-rollover approximation [Ill, 
d = -V’/3HH can be recast as 

& mp,z 
-=-: 
dN ST (7) 

where :\- is the number of e-folds before the end of inflation. BJ, expanding 

the steepness .c around Oj”. z(P) = .ciO + (4 - @~~)z&, me obtains d as a 

function of ,\I’: 

0 - Qso = E (exp[(N - .5O)mp&,/S~] - 1) ; 

= 7llPl JGiG 
n _ 1 _ RT (=PKN - jO)(n - 1 - 7w)/‘? - 11. (8) 

The change in the value of the scalar field over the 8 important e-folds of 

inflation (= ~34) depends upon n and no: If the difference between n - 1 

and no is very small, then Ad - firnp,; on the other hand, if \/-ny is 

very small or the difference between n - 1 and PLT is large, then AQ is much 

less than mp,. 

This equation, together with the Taylor expansion for the potential, cf. 

Eq. (6). and the equations relating I/’ 50, V$, and V$ to the observables S, 7’, 
n, and 717. cf. Eqs. (:3)> are all we need to recover the inflationary potential. 

To begill. we will recover so~ne familiar inflationary potentials which have 

been analyzed elsewhere in the formalism discussed a.bove [7]. For these 

potentials we do not worry about the scale of inflation. C;,. which is set 

measurements of 3’ and T (see below); we will ouly be interested in the 

shape of the potential. Specifying nT and n is sufficient to recover the shape. 

though we also give T/S as it may be easier to measure than no (and of 

course is equivalent to fly). 
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3 Some Examples 

3.1 Familiar potentials 

First. consider potentials of the form V(d) = a&, often used in models of 
chaotic Station [I’L]. For these models [i] 

TjS = 0.076; no = -O.Olb: n = 0.98 - O.Olb. 

Note, the deviations from scale invariance increase with b; since our recov- 

ery process involves an expansion in the deviation from scale invariance one 

expects the recovery of the potential to be less accurate for larger values of 

b. In Figs. 1 we show the original potential and the recovered potential for 
b = 2.4,16; even for b = 16 the recovery is quite accurate. 

Next. consider exponential potentials. V(0) = V, exp( -fld/m~i), which 

arise in models of extended inflation [14]. For these models [7j 

r/s = O.‘8/j”; 1~* = -!Lt 
8T’ 

?I - 1 = 7zT. 

In Figs. 2 we show the reconstruction for y = I .‘23. 1.94,6.03, corresponding 

to TL~. = -0.06:-O.l5,-0.24. Only for nr = -0.24 is the recovery of the 

potential less excellent: however, this much deviation from scale invariance 

is probably inconsistent with models of structure formation [15]. 

Sow_ consider a cosine potential, V(d) = A’[1 + cos(+/f)], the type of 

potential employed in the “natural-inflation” models [16]. It is not possible 

to provide a general formula for no, n, and T/S; however, there are two 
limiting regimes: J 2 mpt and f 5 mp1. In the first regime, the cosine 

potential reduces to the case of chaotic inflation with b = 2. In the second 

regime (71, 

where &/J 2 ?re~p(-50~~p~~/16~f~). In Fig. 3 we show the recovered 

potential for f = rnt~i/Z. where n = 0.84. Again. the recovery process works 

very well. 
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Finally. consider lhe C’oleman- Weinberg potenbials. I’(O) = 5u4/2 + 

f?o’[ln(@/~~~) - 0.51. often used in models of new inflation: for these models 

T 
: ” :3 x 10-S A- ; 
5’ c 1” 

n = 0.94. 
ml’1 

‘These potentials arc extremely flat and easily recovered as shown in Fig. 4. 

3.2 Unknown potentials 

Yuow we turn Tao the recovery of an unknown potential from cosmological data.. 
The recovery process requires knowledge of three of the quantities T, S1 n, 

and ~zr; we will use T + 5’. T/S, and n. which are probably the easiest to 

measure. The quadrupole temperature anisotropy measures S+T; supposing 
that its value is 16 PI<. the COBE DMR determination: we can immediately 

infer \;50: 

c;, = (3.3 x 1 o16 GeV)4 
1 - l.l(n - 1) + i(7z - 1 - ?q) 

1 t SIT i- 
(9) 

(We remind the rea,der t,hat, 11,~ = -O.l4Z’/S.) From this equation we see 
that the value of & is most sensitive to T/S, varying inversely with it. That 

is. the scale of iufkion rises with the amplitude of tensor perturbations. 
asymptotically approaching an energy scale of about 3 x 10’” GeV. 

Once Pi0 is fixed. ‘C and T/S determine t,l:e shape of the potentA. Gener- 

ically, there are four qualitatively different outcomes for the measured quan- 

t,ities which lead to four generic inflationary potentials: 

1. 1% = 1 and T/S very small, corresponding to scale-invariant scalar and 

tensor perturbations 

2. n significantly less than 1 and T/S very small. corresponding to tilted 
scalar Auctuations and scale-invariant, small-amplitude gravity waves 

3. n = 1 and T/S of order unity, corresponding to scale-invariant scalar 

perturbations and tilted, large-amplitude gravity waves 
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-1. n significantly less than 1 and T/S of order unity, corresponding to 

tilted scalar and tensor perturbat,ions and large-amplitude gravity waves 

The four generic potentials are illustrated in Figs. 5. For large T/S, 

cases (3) and (a), the potential is steep, the scale of inflation is relatively 
large, and the variation of 0 over the relevant &folds is of the order of the 

Planck mass. For small T/S, cases (I) and (Z), the potential is very flat, the 
scale of inflation is relatively low, a,nd the variation of @ over the relevant 

s-folds is much less than the Planck mass. Coleman-Weinberg potentials 
provide a,n example of case (I); cosine potentials and the potential V(b) = 
-~.i’o~ + Xq5’ [I I] provide examples of case (2); recently: an example of a 

potential correspondin g to case (:3) has been presented [li]; and exponential 

potentials Iprovide an era~mple of case (4). Finally, n can be larger than unity; 

however, the two new cases, n significantly greater than one a,nd T/S small 

or of order unity, are qualitatively similar to cases (2) and (4). 

4 Discussion 

The scalar and tensor contributions to the CBR quadrupole anisotropy, S 

and T. and the power-law indices of the spectra of scalar and tensor pertur- 

bations. n and ,I?‘, serve to determine-indeed overdetermine-the value of 

the inflationary potential and its first two derivatives. In principle, measure- 

ments of these four quantities can be used both to test the consistency of 

the inflationary hypothesis and to recover the inflationary potential through 

the first, three terms in its Taylor expansion. We have shown the recovery 

of sever~al fa,miliar potentials. cf. Figs. l-4. and t.he four generic types of 

inflationary potenti& that arise, cf. Figs. 5. 

In order to recover t,he inflationary potential measurements of at least 
three of the quant,ities n. I’. .S, and rry are required. In all likelihood the first 
three will be the easiest to determine; CBR anisotropy as well as determina- 

tions of the distribution of matter and large-scale structure should serve to 
measure n, and large-angle CBR anisotropy should determine S and T (in 

the case of T, at least an upper limit]. An independent measurement of no 



seems much more difficult, hut provides an important consistency check. 

In any case. determinations of n.> S, and T are likely to have significant 
uncertainties, so that the recovery of the underlying inflationary potential will 

not he as easy or precise as our examples would indicate. In Fig. 6, we show 

the effect of these uncertainties on the recovery of the shape of the inflationary 

potential for the following data: n = 0.9 i 0.2 and T/S = 0.3 f 0.25. Even 

worse is the effect of uncertainties on determining the scale of the potential: 
Recall, when S+T is normalized to the COBE result, r/,0 varies as the inverse 

of T/S. which for the above “data” leads to an order of magnitude range in 

the value of V,o. 

An accurate recovery of the inflationary potential is still a long way from 

reality ~-and. of course. it, may be that inflation never even occurred. How- 
ever. with the COBE DMR anisotropy measurements the first step has been 

taken. ?~Ioreover. the potential payoff---probing physics at unification energy 

scales is worth the eRort. if not the wait. 

This work was support,ed in part by the DOE (at C:hicago and Fermilab) and 

by the NASA through NAGW-2381 (at Fermilab). This work was completed 

at the Aspen Center for Physics. 
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FIGURE CAPTIONS 

Figure 1: Recovery of chaotic potentials, V(d) = a&, over the 8 e-folds 

relevant for astrophysical scales and for comparison t,he original potential 

(broken cwves): (A) 6 = 2; (b) b = 4; and (c) b = 16. 

Figure 2: Recovery of exponential potentials, V(4) = &exp(-134/mpl), 
and for comparison the original potential (broken curves): (a) 9 = 1.23; (b) 
$ = 1.94; and (c) ,$ = 6.03. 

Figure 3: Recovery of the cosine potential, T<‘(d) = A”[1 + cos(q/f)] and 

,f = ~~xpl/.), and for comparison the original potential (broken curve). 

Figure 4: Recovery of a. Coleman-Weinberg potential with r~ = 1 x 10L6 GeV 
and for comparison t,llc original potential (broken curve). 

Figure 5: The four geucric inflationary potentials: (a) ~2-1 = -2x 10m6 and 
T/S = 1.4~ 10M5. with the CORE DMR normalization y;l” = 2.0x 10’” GeV; 

(b) n = 0.85 and ‘T’/S = 1.4 x 10-4L. V:,l” = 3.6 x 10L5GeV; (c) n = 1 

and T/S = I, \&‘” = 2.9 x 1016GeV; and (d) n = 0.85 and T/S = 1, 

V”4 = 2.9 x lOI GeV. 50 

Figure 6: An illustration of the effect of observational uncertainties on the 

sha,pe of the recovered potential; here n = 0.9 f 0.2 and T/S = 0.3 & 0.25. 

The four curve.s correspond to n = 0.7 and T/S = 0.05 (solid). R = 0.7 and 

T/S = 0.55 (dotted), IL = 1.1 and T/S = 0.05 (dashed), and n = 1.1 and 
T/S = 0.55 (long-dashed). 
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